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A Class of Accelerated Conjugate Direction Methods 
for Linearly Constrained Minimization Problems* 

By Michael J. Best and Klaus Ritter 

Abstract. A class of algorithms are described for the minimization of a function of 

n variables subject to linear inequality constraints. Under weak conditions convergence 
to a stationary point is demonstrated. The method uses a mixture of conjugate di- 
rection constructing and accelerating steps. Any mixture, for example alternation, 

may be used provided that the subsequence of conjugate direction constructing steps 
is infinite. The mixture of steps may be specified so that under appropriate assump- 
tions the rate of convergence of the method is two-step superlinear or (n - p + 1)- 
step cubic where p is the number of constraints active at a stationary point. The 

accelerating step is always superlinearly convergent. A condition is given under which 

the alternating policy is every step superlinear. Computational results are given for 

several test problems. 

1. Introduction. In [3] a conjugate direction method is described for minimiz- 
ing a nonlinear function subject to linear inequality constraints. An accelerating step 
is always performed after the construction of (n - p) conjugate directions, where n is 
the number of variables and p is the number of constraints active at the limit point of 
the sequence of points constructed by the method. Under appropriate assumptions 
this results in an (n - p + 1)-step cubic rate of convergence. 

The idea of accelerating the rate of convergence of methods of conjugate direc- 
tions for unconstrained optimization has further been pursued in [2] and [9]. In [2] 
the construction of conjugate directions is based on Zoutendijk's projection method 
[11], and the accelerating direction is obtained using an approximation to the solution 
of certain linear equations involving differences of gradients at previous iterations. In 
[9], conjugate directions are obtained by always choosing the descent direction orthog- 
onal to n - I differences of gradients; and therefore, a set of n conjugate directions 
is available at every iteration. This allows an accelerating direction to be used more 
frequently than every n iterations. 

It is the purpose of this paper to extend these methods to minimization problems 
with linear inequality constraints. The algorithm allows considerable flexibility in the 
mixture of accelerating and conjugate direction constructing steps. If the algorithm 
does not terminate in a finite number of steps it is only required that the number of 
conjugate direction constructing steps be infinite. Under appropriate assumptions then 
each accelerating step is a superlinear step, and this results in an i-step superlinear rate 
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of convergence where 1 and the rate of i-step superlinear convergence depend on the 
policy used. 

As a special case we obtain the rate of convergence characteristic of [3]. An- 
other special case is obtained by alternating accelerating and conjugate direction con- 
structing steps. In most cases this policy gives a one-step superlinear convergence rate 
and in all cases the rate of convergence is at least two-step superlinear. 

2. Notation, Formulation of the Problem. Let x E En and assume that F(x) is 
a given real.valued function. If F(x) is differentiable at a point x1, we denote its gra- 
dient at x; by VF(x;) or g1. If F(x) is twice differentiable at x,, we denote the Hessian 
matrix of F(x) at x1 by G(x1) or G.. For any column vector x and any matrix M the 
transpose is denoted by x' and M', respectively. For any vectors x and y, L [x, y] 
{w; w = Ox + (1 - O)y, 0 < 0 < 1} denotes the set of points on the line segment 
joining x and y. 

Let A be an m x n matrix with rows a', a2. a and let b be an m-di- 
mensional column vector with components bl, b2 ... I bmi. Define 

R = {x E En/Ax < b}. 

We consider the problem of determining a point z E R such that F(z) < F(x) for all 
x ER. 

A point x E R is said to be stationary if there exist numbers Xl1 ,2 XM. 
satisfying 

m 
VF(x) = E Xia., 

i=l1 

X.(a'x - bi) = ? X.O < ? for i= 1, 2, . . ,m. 

The Kuhn-Tucker Theorem states that every local minimizer of F(x) over R is a 
stationary point; and that if F(x) is a pseudo-convex function, then every stationary 
point minimizes F(x) over R. 

It is the purpose of this paper to describe a class of algorithms which eithertermi- 
nate with a stationary point after a finite number of steps or produce a sequence of 
points {x;} with the properties: 

(1) under a differentiability assumption {F(x1)} is strictly decreasing; every 
cluster point of {x;} is stationary; and if {x;} has an isolated cluster point, then {x;} 
converges. 

(2) if the sequence {x;} has a cluster point z and in a neighborhood of z, G(x) 
exists and has certain other properties, then {x1} converges to z. The rate of conver- 
gence will be i-step superlinear where l and the rate of superlinear convergence depend 
on the algorithm specified. 

For later reference we formulate: 
Assumption I. F(x) is twice continuously differentiable and there are constants 

0 < u < 1 such that ,iIIxII2 < x'G(y)x ? 1lIyII2 for all x and y. 
For ease of presentation the convergence and convergence rate results of Sections 
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4 and 5, respectively, are obtained using the rather restrictive Assumption I. In Sec- 
tion 6 a modified class of algorithms is presented for which the convergence and con- 
vergence rate results apply under much weaker assumptions (Assumptions II and III). 
Some computational results are presented in Section 7. 

3. General Description of the Algorithm. At iteration j the point x1 is known. 
The next point in the sequence is obtained by constructing a descent direction s;, a 
stepsize a, and setting x1+ 1 = Xj- a1si. 

Let D= [d11, d2j, . . ., d,,,] be an (n x n) nonsingular matrix and let D-1 = 

[cl;, C2j,. Cn]. Suppose for simplicity that the first p constraints are active at 
x;. If it is appropriate that these same p constraints be active at xj+ 1, then sj must 
be orthogonal to a', a'. a;. A simple way to do this is to require that dii = a' 
for i = 1, 2, . . ., p and then to take s; parallel to any of the last n - p columns of 
D-.1. By definition of the inverse matrix the required orthogonality property will be 
satisfied. Choosing sj in this manner also results in sj being orthogonal to n - p - 1 
of the last n - p columns of D.. If these columns are required to be normalized dif- 
ferences of gradients at previous points, then si(gii+ 1 - g1i1) = 0 so that Sj will be 
approximately conjugate to n - p - I previous search directions si_i, thus assuring a 
rapid rate of convergence. 

The columns of Dj will in general consist of gradients of active constraints a; 
and normalized differences of gradients (g1-i - g1i+ I)/1Hui isf 11. To record the 
origin and type of each column we use the index aij where 

-k if d 0 = (gk -gk + 1 )/I Ik sk 

if d.. al 

An infinite subset of iteration indices J is assumed to have been specified at the 
beginning of the algorithm. For i E J we initially consider any column ci, of Di 1 to 
be a potential search direction and compute the n directional derivatives (v1)1 = 

c1gllIciiII. We compute (v,)1, the largest derivative in a direction which will drop an 
active constraint and l(v,)kl the largest derivative in a direction which will maintain the 
active constraints. In the first few iterations any direction with a large directional 
derivative can be used to reduce F. Eventually, however, the search direction should be 
chosen in such a way as to guarantee convergence to a stationary point and to obtain 
a rapid rate of convergence. If (v1), is considerably larger than I(vi)kl, then it is clear 
that an active constraint should be dropped. To ensure that zigzagging does not occur, 
we require that if at iteration i - 1, a new constraint became active then no constraint 
may be dropped at iteration j unless there is no other usable direction. The information 
required to enforce this rule is contained in the indicator , which was set equal to one 
if a new constraint became active at the previous iteration. 

If no active constraint is to be dropped, let r be the column number of D' cor- 
responding to the oldest difference of gradients. Since the rate of superlinear conver- 
gence of the algorithm will be determined by the oldest gradient difference information, 
the sharpest results will be obtained if we use Sj = Crj(vj)r and then replace d,r by more 
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recent information. In the first few iterations, if l(vJ)rI is larger than some fixed posi- 

tive constant B, it is quite reasonable to do this. On the other hand, if I(Vj)rl < A but 

l(v1)kl is larger than some other fixed positive number y, it seems more appropriate to 
search along ckl(Vi)k to obtain a large local decrease in F. 

When Xj is close to a stationary point, then both l(vj)rl and l(Vi)k I will be small. 

If crj tends to become orthogonal to g1 so that l(Vj)rl tends to zero and in addition 

I(vi)kl remains bounded away from zero, then it is clear that convergence to a station- 

ary point cannot be guaranteed using Crj(V,)r as a search direction. To avoid this situ- 

ation we introduce the test l(v1)rl > 31(vj)k 2 and use Crj(V,)r only if it passes this test. 

As j increases, i(Vj)k I becomes small and the test becomes weaker, making it increasingly 

more likely that cri(Vi)r can be used as the search direction. If the test is not satisfied, 

then in order to maintain convergence, s1 must have a component parallel to cri. Fur- 

thermore, it may occur infinitely often that the test has failed. In this case if s, is 

constructed so that it converges to a direction parallel to crjX then the strongest con- 

vergence rate results will still apply. Choosing sj = (sign(vj)rcrj + ckI(v)k)I(vj)k I when 

the test fails ensures that both these properties are satisfied. J1 is the set of iteration 

indices for which s; is chosen by this rule. 
For j J a special search direction of the form si = S .X?Owicqi is constructed 

to accelerate the rate of convergence of {x1}. Assuming that x1 is close to a stationary 

point z, Taylor's theorem gives F(x1 - s1) F(x,) - 2wigj;c + %X2w3c' Gc. since it 

will be shown in Theorem 2 that the ci's are approximately conjugate directions. An 

appropriate way to choose the coefficients wi is to minimize this quadratic approxi- 

mation to F. This gives wi = g;ci1/c1Gci. In Theorem 2 it will be shown that Gc; 

di1llcill. Thus it is appropriate to set w= gilllciill/ (vi)i. 
In Step II of the algorithm the determination of the stepsize is based on the re- 

sult (Lemma 6) that for i 0 J1 the optimal stepsize converges to unity. If a unit step- 

size gives a feasible point, then the Armijo test is applied; and the stepsize is repeatedly 

reduced until an acceptable stepsize is obtained. It will be shown in Lemma 6 that 

after a finite number of steps the Armijo test will always be satisfied with a unit step- 

size. For i E J1, the optimal stepsize converges to 

I(Vj)rI I CkjiIl 

(v)kI + (vj)kl I 

and the procedure is similar to the above. 
In Step III of the algorithm D,+ 1 is obtained from D1 by replacing one of its 

columns with a new vector. The column to be replaced is either one which contains 

the gradient of a constraint which has just become inactive or the column correspond- 

ing to the oldest gradient difference information. The new column is either the gradi- 

ent of a newly active constraint or the normalized gradient difference di = 

(g1 - gi+ )1IIasll. If si = (sign(0j)dcrj + Ckj(Vj)k)I(Vj)kI and l'rj dl < Ick,dI(vI)71, then 
it is not possible to ensure that IID . 1 11 will remain bounded. In this case and when 

1+1 

j t J, the update is not performed; and we set D-.,' = D-1. It will be shown, how- 

ever, in Lemma 5 that after a finite number of steps Di is always updated for j E J. 
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Since D.. differs from D1 by exactly one column, it is straightforward to compute 
D 7+ 1 from D-1 using a standard simplex transformation. Finally, it should be empha- 
sized that only D-1 is required for the computations of the algorithm; and that since 
D' is not required, it need not be stored. I 

An important property of the algorithm is that under the assumption of strict 
complementary slackness for all i sufficiently large the constraints active at x; are pre- 
cisely those which are active at z. Suppose these constraints are p in number. The 
algorithm is designed in such a way that the mixture of conjugate direction construct- 
ing and accelerating steps is flexible. Performing n - p consecutive regular steps and 
using an appropriate approximation to the optimal stepsize gives an n - p-step super- 
linear or- quadratic convergence rate (Theorem 5). Following these steps with an ac- 
celerating step always gives a superlinear rate (Theorem 3) and this rate depends on 
the oldest gradient difference information in D.. An important feature of the algo- 
rithm is that regular and accelerating steps can be performed alternately. This policy 
results in a two-step superlinear rate (Theorem 4); and in addition, if the accelerating 
step does not converge faster than expected, then both regular and accelerating steps 
are superlinear steps (Theorem 6). 

4. Detailed Description of the Algorithm and Convergence. In the algorithm we 
use constants a > 0, , > 0, y > 0, and 0 < 6 < ?. Furthermore, we require an in- 
finite subsequence J C {O, 1, 2, . . . }. For every j 0 J we choose a special search 
direction sj which is designed to accelerate the convergence of the sequence {Xj} gen- 
erated by the algorithm. 

Let xo E R be the initial point and suppose that 

aIx = bi, i=1,* *,q; aIx < bi, i q + 1, .... 

Set 

dio = at, i 1, q, 

and, if q < n, let dq + 1O., dn 0 be any set of vectors such that with Do = 

(d - -. ., dn ) the matrix D- 1 = (c10, . . cn 0) exists. Finally, set go= 1, J1= 
{O} and, J(xo) = fa<1O, . . . , 

ano} withai i1,. ..,q, and o=io , i = 
q + 1, .. . ,n. 

A general cycle of the algorithm consists of three steps which are described below. 
At the beginning of the jth cycle the following data are available: xj E R, g1 = VF(x,), 
,i3 J(xd) = {al, . . , a,hn} and D1 = (cl * d 

Step I: Computation of the Direction of Descent s,. Let uj = gDi-1, uj= 
((uj) , - . .., (u)n) and set 

(vi ii i n. 

Define 1 = 1. and k = k, such that 

(v.), > (v.) for all i with a.. > 0, 

I(vI)kl > I(v.)il for all i with a.. S 0. I Ii ii 
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If ?eij S O for all i, set (v.)1 = 0; and if ati0 > 0 for all i, set (Vj)k = 0. 
(i) j J, i.e., a special direction Sj is chosen. 
Set 

S. Z c..(V.)., 

and 

S ifg 'T> 0, 
s;.= cli(vj if g? S 0 and (v.), > O, 

O otherwise. 

(ii) j G J, i.e., a regular direction s, is chosen. 
Set 

Sj = C1j(V1)1 if ((vi)1 > Cl(vI)k I and ,3. = 0) or 

((v,)k = 0 and (v.), > 0); 

otherwise determine r such that 

-et .i < - ct i for all i with 01 . < O, 

and set 

c .(v.) if l(v.) I > ( or (1(v.) > 12(v) and I(v.)I<'y), 
r1 r, r r j>0(-k '( k1< 

s. = j ckj(vj)k if l(Vj)rl < 1 and '(vI)kI > , 
(c sign(v.) + Ck (v.)k)l(V*)k otherwise. 

If s1 = (sign(vj)rcrj + Ckj(vj)k)I(vj)kI, set J, = J, U fj}. Go to Step II. 
Step II: Computation of the Stepsize a,. If g's, < 0, stop, otherwise let 

a.x. - b. 
* = min , for all i with a's. < O 

and 

F(x.) - F(x. - as.) 
hmn , a) a > 0. 

ag1Si 

Set 

m | in jr| + I(v) I kif j J 
(V )k Ic II I 

** If, for i = 1.m, aass > 0, set &>*-oc. If the minimal vlaue a'* is attained for more than I II Ij one index, we apply a smnall perturbation to b in such a way that for the perturbed constraints, 
V7* is attained for exactly one index. 
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and let v; be the smallest nonnegative integer for which h(x1, a(1?)V1) > 6. 
Set a, = (?)"i and x1+ 1 = x;- aj9s Compute g1+ 1 and go to Step III. 
Step III: Computation of D11. J(x7 1 1), and t3+ 1. 

Case 1. a1 < a,*, i.e., no new active constraint occurs at x,+ I 
Set 1,+1 = O and if j EJ, di = (g; - gj+ 1)/ Ilaks1I. Let 

I if S. = c1j(v1)1, 
v = k if s = ck(v)k, 

rif s.=c .(v) or i E JJ and Ic'.d.1 > lc' d.(v.) I. 
,f 

S'= C 
,k 1k17I Jj,k 

If j J or i E J1 and lc' dI < lcd,(vI)kI, setD1 = D7 1 and J(x + J(x,); 
otherwise, replace the 'th column of Dj by d., denote the new matrix by D+1 and 
determine D,-+ from D- 1. Set 

J(xi+ I ) = l?t1j+ 1, X ***X?n,i+ d } 

where ai j+ I = ?4s i L v, and a,,,+ I = - i 
Case 2. a1 = a,*, i.e., a new constraint becomes active at x,+ 
Set = 1 and 

1 if S. = c (v.), 
v= k if s=ckcv)k or sj Z c(v), 

r if s. = cj(v.)r or i EE J1 I r.i 
;r or j 

Let t = be the index for which the minimum a* is attained. Suppose 

Ic' a I > YIIc II**** p)it VI 

Replace the vth column of D by at, denote the new matrix by Dj1 and deter- 
mine D- from D1. 

Set 
J(x+ 1)= {1,j+ 1, el nj+ 1} 

where ai,i+ 1 = ?0i, i : v, and at,,+ 1 = yj- 
PROPOSITION 1. Let Assumption I be satisfied, xj E R and suppose sj, a, and 

D, are determined by the algorithm. Then 
(i) D1 is nonsingular, i.e., D7 1 exists. 
(ii) g1s1 < 0 if and only if xi is a stationary point. 

(iii) If x1 is not a stationary point, then a1 is well defined, x+1 =x - ags E R 
and F(x,+ 1 ) < F(x,). 

Proof. (i) By assumption Do is nonsingular. For every j, D; and Dj are either 
identical or differ in exactly the vth column, i.e., d.1 0 dvj+ l It suffices, therefore, 
to show that d'1+1 cvj $ 0. If 0r = a,*, this follows immediately from the assumption 
in Case 2 of Step III of the algorithm. If a0 < aj*, Assumption I and Lagrange's for- 

*** The case that this assumption is not satisfied is discussed in Remark 1. 
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mula [10] imply that there is GE L [x,, x+1 ] such that 

s'd =s =d.=si = s'.G(Q)-1i > Alls.11 > 0. 
i V,j+1 I 1 Ilas. S. lsi 1 I 

I I I 

It follows now from the definition of v in Step III of the algorithm that sj is parallel 
to cv; and, therefore, d+ cj $ 0. 

(ii) Writing g1 in the form 
n 

gj = E )ii dij 

we observe that Xj is a stationary point if and only if ?0i < ? for i with cq, > 0 and 

Nj = 0 for i with aii < 0. Since 1tf = c jg1 = lIcijlI(vj)j, xi is a stationary point if and 

only if (Vj)k = 0 and (v1), < 0. By Step I of the algorithm this is equivalent to s; = 0. 
(iii) Since a's. > 0 for all i with oqij > O, it follows that a,* > 0 and x;- as E 

R for 0 < a < I. By Taylor's theorem there is tj E L [x,, x;-as,] such that 

F(x.) - F(x. - as) = ag's. - a(g. - VF(Q.))s'. 

This implies that 

h(x.; a)- =-(I VF(Q;))'s.1g.s. Ik II I I, 

where h(x,; a) is defined in Step II of the algorithm. It follows that lim_0Oh(xj; a) = 

I so that v, is well defined and F(x,+ 1) < F(x1). 
Remark 1. In the convergence proof we need that the sequence { IIDi lII} is 

bounded. This is shown in Lemma 1 provided Ic' a, > 'yllc,Il for some y > 0. If vi 
this assumption is not satisfied in Case 2 of Step III of the algorithm, the matrix 
Dj 

t is reset in the sense that all columns d1 1+ 1 such that aU+ 1 0 0 are replaced 
by unit vectors orthogonal to all other columns of Dj+ . The details of this procedure 
are discussed in [7]. 

The proof that the sequence {xj} generated by the algorithm converges to the 
global minimizer of F(x) over R is rather lengthy. Since the algorithm given in this 
paper is a generalization of a method described in [8], we shall not give a new con- 
vergence proof but show that the algorithm has the properties upon which the con- 
vergence proof given in [8] depends. First, we need 

LEMMA 1. Let Assumption I be satisfied. Then the sequences {D1}, {D1 1}, 
and {s,} are bounded. 

Proof: Using the arguments given in the proof of Lemma 1 in [7], we see that 
{D1} is bounded and that it suffices to show that there is some X > 0 such that for 
all j e J 

(1) Icv1dv j 1+1 c I X colc 11, 

where v is defined as in Step III of the algorithm. 
If a1 = ai*, it follows from Case 2 in Step III of the algorithm that (1) is satisfied 

for every X S y. If a1 < a*7, we see as in the proof of part 1 of Proposition 1 that 
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s dv j+1 > illsjI1, which in conjunction with the definition of v and sj implies (1) if 
I VJ Ji 

For j e J1 we have s; = (crj sign(Vj)r + Cki(Vi)k)I(Vi)kI and, therefore, 

s'd = s.d. = (d,Crj sign(jv.) + d'c (V ))I(Vj > ptlls.I1, 

or 

d%cr sign(V.) + d'c.(V.) > mild'c. sign(v.)r + dc(. j) 
j 

i Ir IjkjjVk j r; jr jCkj( 

Since {D1} is bounded, the right-hand side of this inequality is bounded away from 
zero; i.e., there is a constant 6 > 0 such that 

(2) d.Crj sign(vi)r + dck (VI)h> for all j E J1, 

which implies (1). 
The algorithm given in [81 always uses as search direction either cki(VJ)k or 

C11(V1)1. The stepsize a1 is the optimal stepsize, i.e., the solution to 

min{F(x. - as.)1O < a. < a*}, 
I I I I 

where cr7 is the maximal stepsize defined in Step II of the algorithm. 
For sj - c,1(V1), the property of sj which is used in the convergence proof given 

in [8] is the following: (Lemma 5 in [8]). 
Let {x;, i E I} be a subsequence of {x;} which converges to z such that for all 

j EI, 

a.x)= b, iEI-; a x.<b, i nI 

where Im is some subset of 1, ... , m}. If the orthogonal projection of VF(z) onto 
{xla'x = 0, i E Im } is different from zero, then there is e > 0 such that gs, > e for 
j E I sufficiently large. 

The critical properties of the stepsize a, are established in Proposition 1 and 
Lemma 3 of [8]. The main property used is the following: For every e > 0 there is 
6(e) > O such that gs1 > e and a7* > e imply F(xi+ 1) < F(x.)-8(e). 

In the following two lemmas we shall show that the search direction s; and the 
stepsize a1 generated by the new algorithm have these properties too. 

LEMMA 2. Let Assumption I be satisfied and let {s;} and {x;} be determined by 
the algorithm. Let Im = 0 or Im C {1, . .. , m}. Suppose {x;, j E I} is a subsequence 
of {x;} which converges to some z E El. If, for every j C I, 

ax. = b., i EII and a'x. < b. i?It 

and the orthogonal projection of VF(z) onto {xlax = 0, i E Im } is different from 
zero, then there is e > 0 such that for i E I sufficiently large 

l(V,)kI > e and s; =A c,(v.) implies g's. > e. 

Proof Let Px denote the orthogonal projection of x onto {xla'x = 0, i E I}. 
It follows from Lemma 2 in [8] that, for j E I, p1 IIPgIll < l(Vi)kl. Hence, PVF(z) # 0 
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implies that there is e > 0 such that i(Jv)k I > e for i E I sufficiently large. 
Since {Dj} is bounded above, there is a constant co > O such that Ilc 1II > X for 

all i and j. 
Thus, if sj = ck(u)k, we have 

g,i = k,C,j(Vj)k = ckjII((Vl)k) > V)k 

If si = (Cr sign(vj)r + ckl(vj)k)l(vi)k I, we have 

(1) g~.S = (fg,c j. + I IckjI1((Vj)k) )i(v)kl > wI(v.)I - 

Finally, if s1 = Z <0cij(vj)j, then 

gjs.= I E Icij k((v})2 > tic .II((vj)k)2 > @Y(v')'2 

ii 

which completes the proof of the lemma. 
LEMMA 3. Let Assumption I be satisfied, and let {s;} and {aj} be determined 

by the algorithm. For every e > 0 there is 6(e) > 0 such that for all i, 

g's. > e and a * > e imply F(x+ 1 )F(x.)-6(e), 
JiI I I () 

IIx.+ 1- x > e implies g's > 6(e), 

.s. > e and a. < au imply lIx - x.Ii > 6(e). 
gII I I j+1 I 

Proof. By Taylor's theorem there is t, E L [x;, x; - csjl such that for a > 0, 

(1) F(x.) - F(x. - as,) (VF(.) - g.)'s. 

ag.s. g1S. 

Because vF(x) is uniformly continuous and {sj} is bounded, there is r > 0 such 
that for all j, 

(2) IIvF(%) - g.lI Ilsil S e/2 for 0 < a < r. 

If gsj > e, it follows, therefore, from (1) and (2) that for 0 < a S r, II 

F(x.) - F(x. - as.) IIVF) - g - s11 
(3) ~~~~~> 1 > >iIsi 

ag1s1 gs.s 2 
ggj I g~~~~~~I I 

By inequality (1) in the proof of Lemma 2 we have 

(4) I(vY)kI > e1 > 0 for all j E J, with gs, > 0. 

Hence, g's > e and a* > e imply that a> > 0 for some e2. By (3) and 
the definition of P, we have, therefore, 

(5) a.> ?mn{ r, }e > 

and 
F(x )-F(x+1) > a6g1s, > ?6e min{r, e2} > 0. 
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If g's > e and a, < cr, it follows from < ai, (3), and the definition of P, 
and a, that a* > T. Thus, (5) holds in this case too. Furthermore, g's.> e implies 

"Sill > 63 for some c3 > 0, which proves the last part of the lemma. 
Since {fu} is bounded, it suffices now to show that 1IsjI1 > e implies g,s1 > 6(e). 

By the definition of S, and the boundedness of {D' 1 } we have, for some e4 > 0, 

I(vj)kI > e4 if S. # clj(v1)1 and IIs.11 > e, 

and 

(VA)l > e4 if s. = c -(v.), and 1Is.I1 > e. 

As in the proof of Lemma 2, it follows then that g's >- co2 where co is a lower bound 
gi 

for {IIcUII}. 
Based on the results of Lemmas 1-3 we can now use the convergence proof given 

in [81 to derive the following. 
THEOREM 1. Suppose Assumption I is satisfied. Then, there is a unique z E R 

such that F(z) < F(x) for every x E R, x ? z. The algorithm either terminates after 
a finite number of iterations with z or generates an infinite sequence {x;} which con- 
verges to z. 

Assume that aiz = bi= i-1, .. ,p, and a z < bi, i = p + 1, .. ., m. By the 
Kuhn-Tucker Theorem there are X1 . . ., Xp such that 

p 

VF(z) L1 ai Ai SO i p. 

If X. < 0, i = 1 . . . , p, the strict complementary slackness condition is said 
to be satisfied at z. In this case, it can be shown that after a finite number of itera- 
tions, the set of constraints active at the elements of {x1} does not change. 

PROPOSITION 2. Suppose Assumption I and the strict complementary slackness 
condition is satisfied. Then, there is jo such that, for j > jo, 

a.x.=b, i=1,...,p and a.x <bi, i=p+1,...,m. 

The proof of this proposition is identical with the proof of Proposition 2 in [8] 
and, therefore, omitted. 

S. Superlinear Rate of Convergence. In this section we demonstrate the rate of 
convergence associated with several important specifications of the index set J of reg- 
ular or conjugate direction constructing steps. To obtain these results it is reasonable 
to require that for all j sufficiently large the set of constraints which are active at x; 
are precisely those which are active at z. Therefore, we assume throughout this section 
that Assumption I and the strict complementary slackness assumption are satisfled so 
that Proposition 2 applies. 

For notational convenience we assume without loss of generality that for all 
i > j0 the columns of Dj have been ordered so that the last p columns contain the 
gradients a1, a2,f.. , ap of active constraints and the first q n - p columns contain 
normalized differences of gradients. 

The convergence rate results will be based on upper bounds on errors associated 
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with various approximations. The following lemma demonstrates the relationship 
among several of these error estimates. The matrix E. of part (c) occurs when Taylor's 
theorem is used to express g1+ 1 in terms of g1 and G G(z). 

LEMMA 4. (a) For any integer 1 > 0, lixj+ - zil = O(IIx, - zl). 
(b) lix1 - zil = O(Igj - vF(z)), llg - VF(z)II = O(lix1 - zhl). 
(c) Define E =f I G(x. + t(x,+ - x,))dt - G; then ILE1I IO as j o oo. If 

G(x) satisfies a Lipschitz condition in a neighborhood of z, then IIE11 = O(lix, - zil). 
Proof. (a) Let j > jo. Since by Proposition 2, (x1 - z) is orthogonal to VF(z), 

it follows from Taylor's theorem that 

F(x.) - F(z) = ?(x. - z)'G(Q.)(x. - z) where G. E L [x;, z]. 

Thus, from Assumption I, 

'11x. - zll2 < F(x.) - F(z) < T711x. _ Z112. 21I 2'j 

Since 1 > 0, by Proposition 1, F(x1+,) < F(x1). Therefore, 

/ j+l - Z112 < F(x.+,) F(z) < I 
IX. - Z112 

and 

hlx+j1 - zll < villx1 - zll. 

(b) From the Lagrange formula [10] and Assumption I, 

lig - VF(z)lI lix. - zhl > g -VF(z)),(x - z) = (x, - z)'G(Q.)(x. - z) 

>llx. -Z112 
I 

where i. E L[x1, z]. Therefore, llx1 - zll < (1/p)llgi - VF(z)hI. Again from the La- 
grange formula and Assumption I, 

llg. -VF(z)112 = (g - VF(z))'(g - VF(z)) = (x; - z),G ,)(g -VF(z)) 

17 llx - zili lg. - VF(z)ll, 
I I 

where X E L [x1, zJ, so that llg - VF(z)lI 6 17 llx - zil. 
(c) Since F(x) has continuous second derivatives and since by Theorem 1 eX 

z as j * 00, it follows that IIE)l1 - 0 asj / oo. If G(x) satisfies a Lipschitz condition 
in a neighborhood of z, then there is a number L > 0 such that for all j suffitiently 
large 

tElIl S sup 1lG(x. + t(x. -x.)) -G(z)I 
I 

<<I I 1I+l I 

6L sup llt(x.+1 - z) + (1 - t)(x. - Z)ll 
o<t<1 

I 

< L? lix j 1-zl + lix. - zlI}. 

It now follows from part (a) that IlEj11l=O(lIx - zil). 
LEMMA 5. (a) For i = 1, 2, . . , q, l(v1),l = O(lIx - zll). 
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(b) For any integer 1 > 0, 

lixj+1 - zil = 0(max{lg1+,c,1I, i = 1, 2, . , q}). 

(c) For all j E J sufficiently large, D-+11 / D-1. 
Proof. (a) For j > oand i = 1, 2, . . ., q, by definition of the inverse matrix 

C,' is orthogonal to a, a2. a and is thus also orthogonal to VF(z). Therefore, 

(v.).=-1-ci =g VF(z))' ci' 
()I =Ii 11CA = 11(Z)lc..11 

ii 11 

and by Lemma 4(b), I(v1)i < lhg, - VF(z)II = 0(llx - zil). 
(b) Let T = {t e En, t = 'i=l tiai}. First, we show that 

(1) for any t E T, lix. - zil = 0(01g. - til). 

To verify (1) choose any t C T and let j > jo. By Proposition 2, (xj - z) is orthogonal 
to both t and VF(z). Thus from the Lagrange formula and Assumption I, 

lig. - til lix. - zil > (g - t)'(x. - z) = (g. - VF(z))'(x. - z) 

=(x;i - z)'G(Qj)(x i - z) > IIXi_ Z112, 

where t, E L [x1, z] . Therefore, lix1 - zI S lig1 - tillp which proves (1). 
Now let 1 be any fixed nonnegative integer, j > jo, and define w= g,lD-1. It 

follows that 

(w1). = g;+,c1 for i = 1, 2, . . , q, and 

q 
= D;.w. = (w,).d.1 + t., 

9~~~~~i 1 

where by Proposition 2, tj E T From Lemma 1, D1 is bounded so that by (1), 

l1j+l - z O(max{l(w.).I, i = 1, 2, q}) 

O(max{1g'+ c.I, i = 1, 2, * , q}). 

(c) From part (a) and Lemma 1 it follows that Idckc(VI)k O 0 as j 00. 

Therefore, from Eq. (2) of Lemma 1 and for all j E J, sufficiently large IdcrjIl > 6/2 > 
0 so that from Step III of the algorithm for all j E J sufficiently large, D7+11 7 D-1. 

The following theorem relates column i of D- 1 to the search direction used when 
column i of Dj was last replaced. In addition, it shows that the first q columns of D71 I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
are conjugate directions. 

THEOREM 2. (a) For every j > jo and i = 1, 2, .. ., q, 

cijlhlciill = S_ai/ls all + WIz 

Gc. = 1cicl ldif + we., and 

Ic' Gc..l = O(llw1jl) for i < k < q, 

where IIwkll, IIwM.ll 0 as i oo. 
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(b) In addition, if G(x) satisfies a Lipschitz condition in a neighborhood of z, 
then 

IIw1.11, 11w3.II = O(IIx___ - zII). 
ii if aii 

Proof. Let j > jo and 1 S i S q be arbitrary but fixed. Let v= - cxiq cv = 

ev(i) = sign((vv)j), and let k be such that i(vv)ki > I(vv)1I for 1 = 1, 2, . . ., q. We 

first show that when column i of D- 1 is updated it is true that c1 v+ I IIc + 

sv/l lsv11 and that the following updates do not substantially change this ith column. 
From Step I of the algorithm, Lemma 5(a), and Proposition 2, 

f Civ(0>Ai if v oil 

(1) SV = civEv(V)kl + O(I(Vv)k 2) if v E j1. 

Column i of D- 1 is obtained from the update formula 

civ 9v gv+ 1 
C,V+l = c d wheredV = 

iV V) ViV 

Therefore, 

i sp A), ~v 0 Ji 
(2) Ci,V+l = s l 11 

| ~i (CV ( V V;V)idV ) + (I(vv)k I)' v E J1. 

For v J f1it follows from (1), the Lagrange formula and Assumption I that 

(3) ~~~~(VV)tC;dV St sG(V)sV 
(3)diciv v v (v v- > 1> 0. 

lIsv1I IISVII2 

Similarly, for v E Jl, 

(4) CV (Ak;d _v SvG(V)SV 

Ivsv 11 Ii s 112 + O(I(vV)kI) 
> 

> 0. 

From (2), (3), (4) and Lemma 5(a) it follows that 

ci,V+1 sV 

(5) I ' 
- s + O(IIxV - zIl). 

i,V+ 1 V 

In general D- 1 may not be updated for several iterations so that 

v+1 v+2 t t+ 

where t is the iteration at which the next update occurs. It follows that = - 

where 
- 

oxri = minf-a.; - o x1i > v, 1 = 1, 2, . . ., 
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and D is obtained from Dt by replacing column r by dt = ( - g+ )/Iatst II. 
Column i of D- is obtained from the update formula 

(6) c =C it- d 

We next show that Ic d, I is appropriately small so that column i is left approximately 
unchanged after one update. 

From Taylor's theorem, 

(7) ctdt = C, (G s11 
+ E 

t Als) 

where E is defined in Lemma 4(c). By definition of #, ci = Ci*v+ i so that from (5), 
s 

G9c = Ic v+1 hG vi + O(IIx~ - zil). it i,v+1 ls>I v ) 

Since di,v+1 = i = dv, we have from Taylor's theorem, 

sp 
sv 

G 
s11 

1 = d, t + 1 -Ev IlIs 11- 

Thus, 

(8) ctG icv+ 1 1i + -s 11E 
+ O(IIxp - zII). 

Furthermore, from (5), 

(9) Is ii - c + O(OIxt - zil). 

Substituting (8) and (9) into (7), applying Lemma 1 and Lemma 4(a) and observing 
that since i - r, d+iCr,+i =O gives 

(10) Ici dt = O(max{lixv - zil, IIE II, IIEtII}). 

From (1), (3) and (4) it follows that IcrtdtI > ,u. Finally, since cit = Ci v + it follows 
from Lemma 1, (5), (6) and (10) that 

C S 
(11) IIi,t+ 1 + O(max{ lxp - zil, IIE 11, IIE II}). 

From iteration v = -i to iteration each column of D' will have been replaced 
at most once. These updates will occur at iterations ii < i2 < i3 < < ii < 1' 
where j, = - cX{y = 1, i2 = - arj = t. *. . , etc. Repeating the arguments which yielded 
Eqs. (6) to (11) at most q - 1 times, it follows that 

(12) 1. =Sc + 1 
IIcJii l is ii 'ii 



ACCELERATED CONJUGATE DIRECTION METHODS 493 

where 

IIw'.II = O(max{lIx. - zll, IIE. 11, IIE. II, . . ., II}). 

Since J is infinite, - -i oo as > oo. Therefore, from Lemma 4(c), for i = 1, 2, 

. ,q, 11 w!IIj >O as j >oo. 
'I 

Furthermore, from (12) and Taylor's theorem, 

(13) Gc.. = IIc..IId.. + w2. 
i ii ii ii ' 

where 

w2= IIcII + E Iv1) 

and thus, IlwIll > 0 as > oo. ii 

Finally, from (13), since for k > i, c'1di1 = 0, it follows that Ic' Gc I = 

O(IwMII), which completes the proof of part (a). 
The proof of part (b) is immediate from (12), (13) and Lemma 4 parts (a) and 

(c). 
In Step II of the algorithm if j 0 J, the stepsize procedure first attempts to use 

a unit stepsize. If necessary, this stepsize is reduced by a factor of ?h until an Armijo- 
Goldstein test is satisfied. The importance of beginning with a unit step is that the 
optimal stepsize converges to unity for i 0 J1, and that as a consequence after a cer- 
tain number of iterations the unit stepsize will always be accepted. For j E J, similar 
remarks apply but with the unit stepsize replaced by 

| ( ) |+ 
I(VY)k' 

11 1 (V')k I~~~~lI .11 

The precise results are contained in the following lemma. 
LEMMA 6. There is a j, such that for all j > jl, pi = 0 and < u,. In parti- 

cular, this means that for i > j,, a1 = 1 for j 0 J1 and 

(v.) IC II 
a = 

r 
|+ '(V')kl kl 1 for j GE Ji I (V. + Iv)I Ic .11 frE1 

Furthermore, if &j is such that F(x - <,S,) S F(x- as.) for all 0 < a < a1*, then 
> 1 as j oo, j 0 J1 and -'/j> 1 as j > oo0, j E J1. 

Proof. From Lemma 5(a), the definition of sj and Proposition 2 it follows that 
>j oo as > 00. Thus, from the definition of a' in Step II of the algorithm it 

follows that for all j sufficiently large, 
I- 

< aj*. 
We next show that 

s'Gs. 
(1) 

I, I =~ 
1 + e. where le1 1 O as j ?? oo j 0 I~S. 

gI I 

Let j E J - J1 and j > jo. Then sj = cr,(v,)r for some r, 1 < r < q. Therefore, gs1 = 

IIcriII((vi)r)2. From Theorem 2, 
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sjGs = tI)2c'Gc . = ((V.) )2(IIC . + O(IIW2jIl)). 

Therefore, 

(2) sjGs.lg's. = 1 + 0(11w2.II). 

Next let j J and j > jo. From Step I of the algorithm sj = X2=1 c1j(vj)i and g;s; 
Eq=U 1lc ll((vj)i)2. Let k be such that l(v/)kl > I(v1)11, i = 1, 2, . .. , q. Then,gsI > 

liCkj,l((Vj)k)2. Furthermore, from Theorem 2(a), 

s'Gs. = ( (v 1)ic1) '(V?jilc)lidd + (V)iwl)j,) 

= Z((V.)1)2,lC1111 + 0(((VI)k)2max{Ill, Iw211, . . ., IIWQjII}). 
i=1 

Therefore, 

s'Gs. 
g I = I + O(max{ llw 21 ll 1w2l . . w ., llw2 II}). 

Equation (1) now follows from (2), (3) and Theorem 2(a). 
From Taylor's theorem, 

F(x. - s.) = F(x.) - g's. + 12s'G(Qj)s., I I I I I I II 

where tj G L [xj, xj - sj] . Thus, for i J1, 

_F(x.) -F(x.- s) _ G_ 1 s 
h (x = h (x. I) = I I Ix I - I 1 I 

II ~~~~~~g S. 2 gS. 

We have from (1) and Assumption I, 

Y ii = i i, L (1 +? )=( +? + i G i 
gS1 s.Gs. SIs 

gi I I I I 

= 1 + O(maxle.1, II G(.) - Gll}). 
I I 

Since sj 0, t z as i ??00 J1, and since F(x) has continuous second deriva- 
tives it follows that h(x1, a) =h(x1, 1) ? 2 as j ?? j j J1 . Since 6 < ?2, we 
have for all j 5 J1 sufficiently large that h(x1, a) = h(x , 1) > b and thus, v, = 0 and 

Let &j be defined as in the statement of the lemma. It follows from the Lagrange 
formula that for all j sufficiently large 

g1s w (4) U. = s'( ),where tjE L [xj, x1-1S,I 
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As in the previous argument, 

= 1 + O(max{le.l, 11G(.) - Gll}). 
I ~ ~~~~~~I 

From (1) and Assumption I, g's1 < 2n 11s1li2 so that I&,l < 4r/u for all i J1 sufficiently 

large. Since sj 0, it then follows that >j z as j 00, j J1 . Therefore, CJj 1 

as >o.j 0,jo J 

Now let j E J1 and j > jo. Let k = k() and r = rQ) be such that I(Vj)kI > 

I(vO)I and -(Xrj < -(Xj for i = 1, 2, . . ., q. We have sj = (sign(kj)r)Crj + (Ckj(Vj)k) 

I(vj)k I so that g;s1 = (I(Uj)rI + iickIii((v,)k)2)I(vj)k . From Theorem 2, 

Gs. = (sign((u.) )iVr iidrj + (Vj)klie lid + O(max{kjlwuaii, l(vI)kl iiwkjIi}))l(vI)kl. 

Therefore, 

s'Gs. = ((v) )2(lIc l1 + O(max{ilw2il , 2v.)kI iiw21li, ((v) k)2})) jj j rj rj 

and 

()s . (V.) i lic 11 ) 
____ I Jr + I(vV. kj (+e. 

= a,(1 + ej), where by Lemma 5(a) and Theorem 2(a), 

cj > 0 as j/ -0, / J. 

From Taylor's theorem, 

F(x -as.) = F(xj) = ag's. + 1/o?sjG(Q)s., 
I II I ~~~'IIgI I I I I 

where E L [xi, xi - C sj] . Therefore, 

h(xj, "a.) = 1 - s' IsG(Q.)sS/g's.. 

It follows from (5) that 

s. G(Q.)s. - s;G(t1)s1 _ 1 (sj s;(G(%1) G)s, 

gS. s'Gs.(1 + e.) 1 + e. \1 sGs. 

O1 
+ (max{le.l, 1lG(.) - GII}), 

where the last equality follows from Assumption I. Since is bounded and sj > 0, 

it follows that >j z; and thus, iiG(1) - Gil > 0 as j >? 00,1 E J1 . Therefore, 

h(x,, C) 1/2; and since 8 < ?h, we have for all j E J1 sufficiently large that h(xj, C) 
> 8; and thus, Vi = 0 and a. = a. 

From (4) and (5), as in the above arguments 

?51&. = 1 + O(max{ie.i, liG(Qj) - Gli}), 

where Ej G L [x,, x1- Gjsj,. Since l&1s1il -O0, it follows that j> z as j - 0, j E 
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J1. Therefore a'/- 1 as j ?? T,,/I E J1, which completes the proof of the lemma. 

The following theorem shows that the rate of convergence of the subsequence of 
points constructed by the accelerating step is superlinear. The rate of superlinear con- 
vergence depends on the oldest gradient difference information contained in D' 

THEOREM 3. 

lix -+ - zil 
(a) lO 1 1 0 as j oo, jJ. 

I 

(b) In addition, if G(x) satisfies a Lipschitz condition in a neighborhood of z, 

then 

llx.+i - zil 
1+1 1 = O(lx -zll), j J, 

lix.- zil O(I 

where r1 = min{- xi; 1 < i S q}. 
Proof. (a) We first show that for all j g J and i = 1, 2,... q, 

(1) Ic,'gj+ 1 1 = O(1Ix. - zil max{11w211, IIE.11}), 

where wl. and E are as defined in the statements of Theorem 2(a) and Lemma 4(c), 
respectively. Let 1 S i S q and j E J, j > jl. From Lemma 6, au = 1 so that x+ 1i 
X= -sj. From Taylor's theorem, 

I I I 
c. - 

I' 
.c . (2) gj+ 1 c1j 

= gj ci - 
s,GcI -s1EcI . 

From Theorem 2(a), Gci, = I1c111ld11 + w2; and since sj = j_q=j(c,,1IIc,lI)c'g, and further- 
more since di1 is orthogonal to clj, C2,. Ci- 1j, ci+11j, ... Cqj, it follows that 

s'Gc.. = g'c.. + s'w 
J i lIll 1Jl 

Substituting this expression into (2) gives 

I~ c1 - sw 2 
s'E. c.1 gj+ 1 cii- sj wij -sj jI 1. 

Since IIxj+ 1 - x11 = Ils,II < IIxj+ 1 - zil + llx1 - zIl, it follows from Lemma 4(a) that 

Ils/I1 = O(1Ix1 - zil). By Lemma 1, IIc.II is bounded. Therefore, 

I c.1I = 0(IIx. - z 11 max{ 11E 11, 11 wj II}), 

which verifies (1). 
Finally, from (1) and Lemma 5(b), 

(3) ~~lix + 
- 

zillIW 22 (3) j+1 = O(max{[IIE.I1, 1w2 Il llw2 II, . . .., 11w2 II}) lix - zil j i' 2j 
I 

and part (a) follows from Lemma 4(c) and Theorem 2(a). 
(b) Part (b) follows immediately from (3), the definition of r1, Theorem 2(b) and 

Lemma 4,parts (a) and (c). 
A particular member of the class of algorithms described in this paper is obtained 
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by specifying the index set J of regular steps. The convergence rate properties of any 
particular algorithm will depend to a large extent on the choice of J. The following 
theorems give specific convergence rate results for a number of important special cases. 

One way of mixing regular and accelerating steps is by alternating them. This 
results in a two-step superlinear convergence rate; and the rate of superlinear convergence 
depends on the information of the previous 2q iterations, this being the number of 
iterations to update all of the first q columns of D- 1. 

THEOREM 4. Let J = {j; j = 2i, i = 0, 1, 2,.. . Then 

l 
2j+2 

Z1 

(a) I I > O as j oo; 

(b) if G(x) satisfies a Lipschitz condition in a neighborhood of z, then 

lix21+2 - ZIl lIIx21 - Zil = O(IIX2j-2q+2 - Zil). 

Proof. Part (a) follows from Theorem 3(a) and Lemma 4(a). To demonstrate 
part (b) we observe that from Lemma 5(c) and the definition of J, 

{-ai,2j+1; i = 1,~ 2, . . . 1,q} = {2j., 2j - 2, . . . , 2j - 2q + 2}, 

so that in the statement of Theorem 3(b), r21+ 1 = 2j - 2q + 2. The present theorem 
now follows directly from Theorem 3(b). 

Each regular step generates a new conjugate direction. Performing q such steps 
consecutively in a space of dimension q leads us to expect a q-step superlinear or 
quadratic rate of convergence. These steps may then be followed by a superlinearly 
convergent accelerating step to achieve a cubic rate over the entire q + 1 iterations. 
The precise result which is similar to that obtained in [2] and [9] for the unconstrained 
case and [3] for the linearly constrained case is contained in the following theorem 
and its corollary. 

THEOREM 5. LetJO =Jo ;j- 1, j-2, .. . , j-qE J} and suppose JO is in- 
finite. In addition, if &j denotes the optimal stepsize at iteration j and for j E JO, 

j-4 = 
&j- 1 U-2 = jj- 2 * * * _q = aj_q then 

(a) llx-zll/llx j_q - zll as i>oo J-; 

(b) in addition, if G(x) satisfies a Lipschitz condition in a neighborhood of z, 
then 11x1 - zII = O(11xi q - Z112). 

Proof. Let j and 1 be such that j E JO, j > jo and 1 < 1 q. To simplify nota- 
tion we assume without loss of generality that the columns of Dj have been ordered 
so that 

_Oj =1j - 1, _a 2j = j - 2 .*, -. . = j - q. 

From the identity 
1-1 

g,=-_ Ed.IIlx._ .- x_ 111+ i+ 
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and the definition of an inverse matrix, it follows that g1c11 = gI 1+ lc11. Since a,1 = 

we have g; l = 0. Also, from Proposition 2, both c11 and s are orthog- 
onal to VF(z) so that 

g1c11= (g1_1+1 -VF(z))' C1j-l11ci Is 11) I 

From Lemma 4 parts (a) and (b) and Theorem 2(a), g';c1I = O(IIXjq - zil IIwhII); and 
therefore, from Lemma 5(b), 

llx. - zll 
ix.' zil 0(max{ 11 w11 w2w > 0 as >~ oo., .11 11w ..I}) z j j qJO 
j-q 

This completes the proof of part (a). Part (b) follows from Theorem 2(b) and Lem- 
ma 4(a). 

COROLLARY. Suppose for j E JO as defined above, j 0 J and for j E J, a1 = a1. 
In addition, suppose that G(x) satisfies a Lipschitz condition in a neighborhood of z. 
Then for j E JO, 11xi+ I - zil = O(IIXjq - Z1l3). 

Proof. From part (b) of Theorem 3 for j E JO 

llixj+- zil = O(1Ix1 - zil l1x1__ - zII) where r. = j - q. 

Remark. Theorem 5 and its corollary also apply if for j E J instead of using 
a1 = the optimal stepsize, a, is obtained using a quadratic interpolation procedure 
described in [8]. Although a, as computed in Step II of the algorithm converges to 
unity, the rate of convergence is not sufficiently rapid to be compatible with the super- 
linear, quadratic or cubic rates of Theorem 5. 

For the policy of alternating regular and accelerating steps if Sj is an accelerating 
direction, then Theorem 4(b) shows that IIxj+1 - zi/lllXj - zil = O(iiXj,2q+1 - zil). 
If the subsequence of points determined by the accelerating step does not converge 
faster than this upper bound predicts, then the following theorem shows that {Xj} is 
every step superlinearly convergent. The rate of superlinear convergence is sharper for 
the accelerating step than for the regular step. 

THEOREM 6. Let J be as in Theorem 4. Assume that G(x) satisfies a Lipschitz 
condition in a neighborhood of z and there is an c > 0 such that 

lix.+l - zll 

lx- zll j-lixj2q+l -zii forallj f J. 

Then 

llx.+i 
- zll 

lIX. - Zll O(llXj_2q + 1 -Zll) for all j 0 J, 

and 
lix. - zll 

lx+1 1 
- 

0(01Xj_4q+2 -zII) for all j E J. 
I 
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Proof. Let j 0 J such that j > ij; and thus by Lemma 6, a, = 1. We assume 

without loss of generality that the columns of D' have been ordered so that 

/lj =i 2i j- 31 . I -aqj =j- 2q + 1. 

Let 1 < v < q. Since Sj= Iq cj(vj)j, it follows from Taylor's theorem and Theorem 2 

that 

q V] + vjj ] j I I I 

= C,g- 1c Vd11d, , Ci; (V)i- W2 S. - c'.E.s. 
vigi V, 

lJ iVV]J V]I 

=-w2'. - c' E. s.. 

Since Ilsj11 = 0(1lx1 - zil), it follows from Theorem 2 and Lemma 4 that 

(1) IC'1g1+1I = 0(0IX - zll I w 2.II); 

and therefore, 

max{(Ic&'g.+ 1 1; i = 1, 2, . . ., q} = 0(IIx. - zll lx - zII). 
q j+ j2q+ 1 

From Lemma 5(b), iLx1 - zIl/lixL - zli = 0(lLXj_2q+1 - zii). 

From (1) and the assumption in the statement of the theorem, 

(2) IcvX /+l (t 11w2l \) =0(11 +2+l 
21 

Vjj+ V]J-2+ zi 
lix - zil lix. - zll lix - zi 

j+1 Ij-2q+1 I -2q+l 

Thus from Theorem 4, for v = 1, 2, , q -1, Ic'gj+ 1 I/ i1xj+ 1 - zil 0 asj - oo 

j 0 J. However, by Lemma 5(b), 

1 = O(max 1 / I 1;i = 1, 2, . ,q)i 

so that there is a constant 0 > 0 which, for all j 0 J sufficiently large, satisfies 

ICqIgj1 I/llx1+1 - zil > 0. Sincej fJ, c,i = ci, +1. Therefore, I(vj+i)qI > I(v1+1)I 
i =1, 2,..., q; and from Step I of the algorithm, s,+ 1 = Cqj(Vj+ 1)q. 

From Taylor's theorem, Lemma 6 and Theorem 2, 

Cvjgj+ 2 CVI +1CVJGCqj(vj+i)q - c' F Sj+1 

=c,11 =lc, Adc q.(v.) -lie .11w 2 S. - c' F. 1S. i+ 1 = cvl I iqii 1+ dq 
- 

CV] V]Ij+ 1 
- jj+1 j+1 

Therefore, from (2), Lemma 4, parts (a) and (c), and Theorem 4(b) 

I c0(' Xj+. - zl l lxj-4q+3 - Zll), V= 1, 2, q - 1, 

vpJ+ 0(iiX j+ - zll lixjx2q+1 - zll), V = q. 

Finally, from Lemma 5(b), 
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IIxj+2 - zll/llxj+1 - zll = O(11Xj_4q+3 - zIl); 

and since j f J implies j + 1 E J, the theorem follows. 

6. A Modified Algorithm. All convergence results in the previous sections are 
based on Assumption I. Since it is in general difficult, if not impossible, to verify this 

assumption it is desirable to try to obtain convergence results under weaker assump- 
tions. It is the purpose of this section to show that for a simple modification of the 
algorithm, convergence can be proven without assumptions on second order derivatives. 
Furthermore, it will be shown that, if the sequence generated by the modified algo- 
rithm has a cluster point in a neighborhood of which G(x) exists and has certain prop- 
erties, the results of Section 5 on the rate of convergence are applicable. 

We shall use the following 
Assumption II. Let xo E R be the starting point of the algorithm. Then there 

exists a compact convex S such that i E R IF(x) S F(xo)} C S, and F(x) is continu- 
ously differentiable on some open set containing S. 

It is clear that under this assumption an optimal solution z exists. By the Kuhn- 
Tucker Theorem, z is a stationary point. We cannot expect that the sequence {xj } gen- 
erated by the modified algorithm converges to z if we only have Assumption II. How- 
ever, we would like to show that every cluster point of {X1} is a stationary point, i.e. 
satisfies the necessary conditions for an optimal solution. 

The proof of this result requires that the sequences {D, } and {D[- } be bounded. 
This has been shown in Lemma 1. The proof is based on the inequalities 

(1) d's. > ,Ills.1 and 1Id.1I >Iq, I, I I 

which follow from Assumption I. Without this assumption, (1) need not be true. There- 

fore, we have to modify the algorithm in such a way that we test whether (1) is satis- 
fied and update D- 1 only if the answer is affirmative. 

We describe now a general iteration of the modified algorithm. The quantities 
Dy 1, J(x1) and , are defined as before. In addition, we use two constants 0 < y1 < 72 

Step I: Computation of the Direction of Descent s;. Same as in previous algo- 
rithm. 

Step II: Computation of the Stepsize. Same as in previous algorithm. 
Step III: Computation of D +11, J(x + ), and ,+- 
Case 1. au < U, i.e., no new active constraint occurs at x+1 . 

Set =+ 0, di = (g, - gj+ 1)/ IIas,11 if j EJ and let v be defined as in the pre- 
vious algorithm. If j 0 J or (7 E J1 and Ic' d I < Ic'Id (vj)k I) or 

Id;s.1 <4y 11s.11 or 1Id.1I>y2, 

set D 7+1 =D7- 1 and J(x + 1) = J(x1); otherwise, proceed as in the previous algorithm. 
Case 2. a1 = u7; i.e., a new constraint becomes active at xj+ 
Same as in previous algorithm. 
It is easy to verify that Lemma 1 holds. Since the first two steps of the algo- 

rithm are unchanged, Lemmas 2 and 3 remain valid. Therefore, we can again use the 
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convergence results of [8] to prove the following. 

THEOREM 7. Let Assumption II be satisfied. The modified algorithm either ter- 

minates after a finite number of iterations with a stationary point or generates an infinite 

sequence {x,} with the following properties: 

(i) llx,+ 1 - x,11 O as j >oo. 

(ii) Every cluster point of {Xj} is a stationary point. 

(iii) If {xj} has an isolated cluster point z, then {xj} converges to z. 

Proof. Because of Lemmas 1-3 the second statement of the theorem follows 

from Theorem 1 in [6]. If there is e > 0 and a subsequence {xj, j E J} of J such that 

Ix1j+ 1 - x11 >? e for j E J, then it follows from Lemma 3 that 

gs. > a(e) for j E J and some 6(e) > 0. 

By the definition of sj, this implies that any cluster point of this subsequence is not a 

stationary point in contradiction to part (ii) of the theorem. The last statement of the 

theorem follows from the fact that lix1+ 1 - x111 > 0 asj I oo. 

In order to derive results concerning the rate of convergence we need the follow- 

ing. 
Assumption III. Let z be a cluster point of the sequence {xj} and let a.z =bi, 

1, . ,p, and a;z < bi, i = p + 1, .. . , m. Then 
(1) There are numbers X. such that 

p 
VF(z) =Z a, and X. < O, i =1,...,p. 

(2) F(x) is twice continuously differentiable in some neighborhood of z. 

(3) There are numbers 0 < u < rZ such that 

pllxll' < x'G(z)x < nll11x11 

for all x E En with al.x = O, i = 1, . . . , p. 
Since by Theorem 7 every cluster point of {Xj} is a stationary point, the first part 

of Assumption III states that the strict complementary slack-ness condition is satisfied 

at z. Furthermore, it is easy to see that Assumption I implies Assumption II and the 

last two parts of Assumption III. 
As a first consequence of Assumption III we have 

PROPOSITION 3. Let Assumptions II and III be satisfied. Then xj z and there 

is jo such that for j > jO' 

ax.=b., i = 1, . . ., p and aix.<b., i= p+ 1, **, m. 

Proof. It follows from Assumption III that z is an isolated stationary point. By 

Theorem 7 this implies that z is an isolated cluster point of {xj}. Thus, again by The- 
orem 7, x1 - z. The last statement follows then from Proposition 2. 

By Assumption III and Proposition 3, there is a convex neighborhood u(z) of z 

with the following properties: 
(1) xj E u(z) for j sufficiently large. 

(2) ,u<IxII2 6 x'G(y)x S rIIxI12 for all y E u(z) and all x E En with ax = 0, i = 
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Because a's1 = 0, i = 1, . . ., p, for j sufficiently large, it follows then from 
Taylor's theorem that, for j sufficiently large, 

Jd'sJ. > pIls.I1 and Ildl < rn, 
I,I I I 

i.e., the test in Step III of the modified algorithm is satisfied for j sufficiently large 
provided 'y1 < ,u and 7y2 > r7. But then the two algorithms are identical for j suffi- 
ciently large and it follows from (1) and (2) that all the results of Section 5 are appli- 
cable. We formulate the result as 

THEOREM 8. Let Assumptions II and III be satisfied and suppose that y1 < A 
and 72 > Ti. Then the convergence results of Section 5 also apply to the sequence 
{X1} generated by the modified algorithm. 

7. Computational Results. In this section we give the results of some computa- 
tional tests in which the method presented in this paper was used to solve four test 
problems. Two of the problems are taken from the Colville study [5] (Nos. 1 and 7) 
and another two, the Chemical Equilibrium and Weapons Assignment problems, are 
taken from [4]. Table 1 gives the timing results in standardized units (see [5] ). For 
the Colville problems, timing results are also given for the revised reduced gradient 
method (RRG). This method was chosen for comparison because it gave the fastest 
time among the methods considered by Colville. The times reported for RRG are 
taken from [5]. 

The computations were performed on a Honeywell 6050 computer at the Uni- 
versity of Waterloo. Colville's standard timing programme executed in an average 
time of 53.8466 seconds on this system, and the standard times in Table 1 were com- 
puted using that figure. 

The mixture of accelerating and conjugate direction constructing steps was de- 
termined as follows. The first n iterates were obtained using only conjugate direction 
constructing steps since the accelerating step is based on the availability of a complete 
set of conjugate directions. After n iterations, an alternating policy was used since, by 
Theorem 6, this gives the sharpest convergence rate. 

Step II of the algorithm uses a unit stepsize provided that it is feasible and passes 
certain tests required for convergence. Lemma 6 shows that after a certain number of 
iterations the unit stepsize will always be used. Examination of the intermediate out- 
put showed that the unit stepsize was used for 76% of the iterations for the four test 
problems. 

The Weapons Assignment problem is of particular interest because of its size of 
n = 100 variables. Although this problem has considerable structure no account was 
taken of this structure when solving it with the method described in this paper. It is 
interesting to note that an accurate solution was obtained after approximately 1.7n 
iterations. 

Theorem 6 predicts that the rate of convergence of the accelerating steps will 
be faster than the rate for the conjugate direction constructing steps. This prediction 
is verified computationally in Table 2 which shows some of the intermediate results 
for the Weapons Assignment problem. 
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TABLE 1 

Numerical Results for Four Test Problems 

Colville Colville Chemical Weapons 
No. 1 No. 7 Equilibrium Assignment 

Variables 5 16 10 100 
Constraints 15 40 13 112 
Standardized Jnew method 0.0042 0.0220 0.0219 5.3828 
Exc. Time R.R.G. 0.0061 0.0290 
Iterations 11 1 4 36 168 
Function Evaluations 12 17 65 208 
Gradient Evaluations 12 15 37 169 
Final Objective Value --32.34867897 -244.8996975 -47.706109086 -1735.569579 

TABLE 2 

Intermediate Results for Weapons Assignment Problem 

Iteration Objective Step Iteration Objective Step 

0 - 624 140 -1735.5684 C 
10 -1153. C 141 -1735.568519 A 
20 -1306. C 142 -1735.568523 C 
30 -1424. C 143 -1735.568572 A 
40 -1539. C 144 -1735.568590 C 
50 -1610 C 145 -1735.568992 A 
60 -1661 C 146 -1735.568992 C 
70 -1693 C 147 -1735.569228 A 
80 -1713 C 148 -1735.569230 C 
90 -1719 C 149 -1735.569313 A 

100 -1726 C 150 -1735.569383 C 
110 -1734 C 151 -1735.569447 A 
120 -1735.17 C 152 -1735.569450 C 
130 -1735.56 C 168 -1735.56957933 A 

"A" = accelerated step, "C" = conjugate direction constructing step 
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